Intravital imaging of tissue homeostasis and cancer

Saskia Ellenbroek, PhD Cancer Biophysics Hubrecht Institute, Utrecht April 10, 2017

Hubrecht Institute

Developmental Biology and Stem Cell Research

http://www.hubrecht.eu/onderzoekers/van-rheenen-group/

van Rheenen lab: intravital imaging

Imaging window: the next step in intravital imaging

Mammary Imaging Window Kedrin *et al*, Nat Meth, 2008 Gligorijvic *et al*, JVisExp, 2009 With GOWS, 2013 Itiple imaging sessions

Imaging windows – long term IVM

Dorsal skinfold chamber

Cranial window

Abdominal Imaging Window (AIW)

Intestinal stem cell competition during homeostasis

- Rapidly self-renewing
- Intestinal lining refreshed every 2-4 days
- Bottom of crypt contains Lgr5⁺ stem cells

Clevers lab

Intestinal crypt homeostasis

Snippert *et al.*, Cell 2010; Lopez-Garcia *et al.*, Science 2010

- ✓ <u>Stem cell marker</u>: Lgr5^{EGFP}-IRES-CreER^{T2}
- ✓ Lineage tracing: Confetti → STOP GFP 47Y → DsRed 473
- ✓ Imaging window: Abdominal imaging window glue

Deconstruition of a amont

Can they both win the competition? Equal competitional strength?

✓ <u>Retracing imaging area:</u>

Ritsma*, Ellenbroek* et. al., Nature, 2014

Central and border stem cells participate in the competition

SCs can be expelled from the SC niche by passive displacement

Competition for space: Repulsion from niche due to division of neighbouring stem cells

Conclusions IVM analysis stem cell homeostasis in SI

- There are ~14 stem cells, but only one of them wins the competition and is therefore a functional (long-term) stem cell
- Microenvironment determines stemness

Vermeulen & Snippert, Nat Rev Cancer 2014

- Stem cells at the center of the niche have an advantage over stem cells at the border
 - Position determines probability of ISC functionality
 - Through transfer between centre and border region all Lgr5 stem cells can act as long-term stem cells

Transfer of extracellular vesicles between tumor cells

Anoek Zomer

Green: Dendra2 mammary tumor cells Do the extraceliticar vesicles (EVs) have a function in the observed migration? Total time movie: 3 hrs

Labeling cells that have taken up EVs using a Cre-LoxP method

How to identify those cells that have taken up EVs to study their behavior?

DsR⁺ reporter cells: no vesicle uptake eGFP⁺ reporter cells: vesicle uptake

Zomer et al, Cell, 2015

Cre⁺ cells; DsRed⁺ reporter cells; eGFP⁺ reporter cells

Zomer et al., Cell, 2015

Cre⁺ cells; DsRed⁺ reporter cells; eGFP⁺ reporter cells

Zomer et al., Cell, 2015

Tumor cells exchange EV-mRNA to cells throughout the body

With the help of Carrie Maynard

Tumor cells exchange EV-mRNA to cells throughout the body

With the help of Carrie Maynard

Zomer et al., Cell, 2015

As with growth factors, EV-mediated communication may have various effects

Is transfer of EVs linked to migratory behavior of tumor cells?

Zomer et al., Cell, 2015

Zomer et al., Cell, 2015

Genetic dissection of colorectal cancer progression by orthotopic transplantation of engineered cancer organoids

Colorectal cancer adenoma-carcinoma sequence (Fearon and Vogelstein, Cell 1990)

ACF/adenomatous polyps

Intermediate adenoma

Carcinoma/ metastatic carcinoma

Mutations in Wnt pathway

Mutation in EGFR pathway Mutations in P53, BMP, TGFβ pathway + other chromosomal aberration

What is the contribution of the different mutations to the different steps of CRC progression?

Genetic mouse models Mice die before developing metastases Most tumors are found in the small intestine

Model the adenoma-carcinoma sequence in vitro

Healthy colon organoids

In vitro engineering with CRISPR/Cas9

To introduce mutations in CRC driver genes (KRAS, APC, P53, SMAD4)

Tumor organoids

Can we make use of this system in vivo?

Drost et al., Nature 2015

An organoid-based tumor model to study colorectal cancer in vivo

Fumagalli et al., PNAS, 2017

An organoid-based tumor model to study colorectal cancer in vivo

Fumagalli et al., PNAS, 2017

АРСКО

АРСко

KRAS^{G12D}

KRAS^{G12D}

Р53^{ко}

Р53^{ко}

SMAD4^{KO}

Triple^{SMAD4}WT

Quadruple

WNT + R spondin / EGF / Noggin WNT + R spondin / EGF / Noggin

Drost et al., Nature 2015

Hans Clevers

Tumor organoids	Mutations
Triple ^{<i>KRAS</i>WT}	APC ^{KO} /P53 ^{KO} /SMAD4 ^{KO}
Triple ^{APCWT}	KRAS ^{G12D} /P53 ^{KO} /SMAD4 ^{KO}
Triple ^{<i>P53</i>WT}	APC ^{KO} /KRAS ^{G12D} /SMAD4 ^{KO}
Triple ^{SMAD4WT}	APC ^{KO} /KRAS ^{G12D} /P53 ^{KO}
Quadruple	APC ^{KO} /KRAS ^{G12D} /P53 ^{KO} /SMAD4 ^{KO}

Absence of the driving APC or KRAS mutation: tumor cells lack proliferation-inducing signals

Tumor organoids	Mutations
Triple ^{<i>KRAS</i>WT}	APC ^{KO} /P53 ^{KO} /SMAD4 ^{KO}
Triple ^{APCWT}	KRAS ^{G12D} /P53 ^{KO} /SMAD4 ^{KO}
Triple ^{<i>P53</i>WT}	APC ^{KO} /KRAS ^{G12D} /SMAD4 ^{KO}
Triple ^{SMAD4WT}	APC ^{KO} /KRAS ^{G12D} /P53 ^{KO}
Quadruple	APC ^{KO} /KRAS ^{G12D} /P53 ^{KO} /SMAD4 ^{KO}

P53 loss i Aletssentrial tations läteration in dutoroeftiellenthan over setsthet permany agenoic alterations

Beerling et al., JCS 2011

All four mutations are required for efficient migration

Fumagalli et al., PNAS, 2017

All four mutations are required for efficient metastasis

Metastatic colonisation

Triple^{P53WT} Triple^{KRASWT} Triple^{APCWT} Triple^{SMAD4WT} Quadruple

Quadruple

Fumagalli et al, PNAS, 2017

All four mutations are required for efficient metastatic outgrowth

We developed a new *in vivo* strategy based on orthothopic transplantation of tumor organoids

in their native environment

✓ allows visualization of CRC progression

We used this approach to dissect the adenoma-carcinoma sequence of human CRC in vivo

Mitotic errors are responsible for the acquisition of new mutations \rightarrow Loss of P53 (Drost *et al.*, Nature 2015)

✓ We defined the gate keepers of tumor progression → *P53* loss is crucial

→ Metastasis occurs upon mutations in APC, KRAS, P53 and SMAD4

 The ability to metastasize is the direct consequence of the loss of dependency on specific niche signals

Van Rheenen lab

Jacco van Rheenen

Maria Alieva Frank Bos Saskia Suijkerbuijk Jessica Morgner Arianna Fumagalli **Carrie Maynard Colinda Scheele** Daniëlle Seinstra Sander Steenbeek Lotte Bruens Andreia Margarido Laura Bornes **Evelyne Beerling Pim Toonen** Anko de Graaff & students ©

Acknowledgements

Collaborators:

Hans Clevers Jarno Drost Johan van Es

Ben Simons CAMBRIDGE Edouard Hannezo

Owen Sansom

Ernst Steller Onno Kranenburg Inne Borel Rinkes Hans Bos Hugo Snippert

Former lab members **Anoek Zomer** Laila Ritsma Nienke Vrisekoop

HUBRECHT IMAGING CENTER (HIC)

Cancer I GENOMICSICENTRE

Improving cure rates for cancer patients

Member of the Roche Grou

Fred Verweij **Michiel Pegtel Tom Wurdinger**

Genentech Fred de Sauvage

